John Blow Primary School Calculation Policy

Created by local maths coordinators from:
Barnby Road Academy
Chuter Ede Primary
Coddington C of E Primary
Elston All Saints Primary
Farndon St Peter's C of E Primary
Holy Trinity Primary
John Blow Primary
John Hunt Primary
Lovers' Lane Primary
Mount C of E Primary
Sir Donald Bailey Academy
William Gladstone C of E Primary

Foundation Stage: F1

Before addition can be introduced, children need to have a secure knowledge of number. In F1, children are introduced to the concept of counting, number order and number recognition through practical activities and games.

This is taught through child initiated games, such as hide and seek and I spy. Children also learn how to count 1-1 (pointing to each object as they count) and that anything can be counted, for example, claps, steps and jumps. This is reinforced by opportunities provided in the outdoor area for the children to count e.g. counting building blocks, twigs etc.

Introduction to addition:
Once children are secure in their number knowledge, children are introduced to the concept of more and less. Children learn how to distinguish the difference between sets of objects and when two groups are of the same size. Adults model the initial addition vocabulary supported by age appropriate definition. An example of this is
"This group has more, this group has less. These groups have the same.
They are equal"

Children are taught all number objectives within the 30-50 month age band from the Development Matters curriculum beginning to extend into 40-60 months. Children are then given opportunities to transfer adult taught skills during independent play. This is supported by the three Characteristics of Effective Learning: playing and exploring, active learning, creating and thinking critically

Before subtraction can be introduced, children need to have a secure knowledge of number. In F1, children are introduced to the concept of counting backwards. This is taught through child initiated games indoors and outdoors such as acting out counting songs and running races (children shouting " $5,4,3,2,1,0-60$!").

Introduction to subtraction:

Once children are secure in their number knowledge, children are introduced to the concept of less and subtracting by counting backwards. Children learn how to take 1 object away through singing songs such as ' 5 little monkeys'. Children use their fingers to represent how many monkeys are left with adults modelling how to 'subtract' one finger / monkey away each time.

Adults model the initial subtraction vocabulary supported by age appropriate definition. An example of this is

> "subtract / take away, we have one less monkey, OH NO ! One monkey has gone away!"

Children are taught all number objectives within the 30-50 month age band from the Development Matters curriculum beginning to extend to 40-60 months.. Children are then given opportunities to transfer adult taught skills during independent play. This is supported by the three characteristics of effective learning: playing and exploring, active learning, creating and thinking critically

Doubling

Doubling and halving is not expected in F1, however the concepts can be introduced through discussion and play if appropriate.

Before doubling can be introduced, children need to have a secure knowledge of counting, number facts and addition in order to double.

Children are then introduced to the concept of doubling through practical games and activities, including the use of the outdoor areas. Children act out 'doubling' by physically adding two equal groups together to find out the 'doubles' answer.

What is double 2? Double 2 equals 4
Children build on their previous knowledge of 'addition' by learning that doubling is when you add two equal amounts together.

Halving
Before halving can be introduced, children need to have a secure knowledge of counting forwards and backwards, number facts and subtraction in order to halve and share.

Children are then introduced to the concept of halving and sharing through practical games and activities. They act out 'halving and sharing' through activities such as sharing food for their Teddy Bear's Picnic, sharing resources equally to play a game. This is reinforced by opportunities provided in the outdoor area for the children to halve and share out objects such as building blocks, twigs etc.

Children build on their previous knowledge of 'subtraction' by learning that halving and sharing is when you divide an amount into equal groups.
Adults model halving, sharing and initial division vocabulary supported by age appropriate definition. An example of this is

One for you, one for me...I How many have

 you got? (Adults to model counting to check) We have got the 3 same. You have got 3 cakes and I have got cakesFoundation Stage: F2

Early Years Foundation Stage: Addition

Early Years Foundation Stage: Subtraction

Children begin with mostly pictorial representations

XXX take away 2

Introduce - to mean take away and = as equals and is the same as
Concrete apparatus is used to relate subtraction to taking away and counting how many objects are left.
Concrete apparatus models the subtraction of 2 objects from a set of 5 .
Construct number sentences verbally or using cards to go with practical activities.

Children are encouraged to read number sentences aloud in different ways "five subtract one leaves four" "four is equal to five subtract one"

Children make a record in pictures, words or symbols of subtraction activities already carried out.

Solve simple problems using fingers

Number tracks can be introduced to count back and to find one less:

```
1
``` 3 5 6

What is 1 less than 9 ? 1 less than 20?

Number lines can then be used alongside number tracks and practical apparatus to solve subtraction calculations and word problems. Children count back under the number line.

Children will need opportunities to look at and talk about different models and images as they move between representations.

KEY VOCABULARY
Games and songs can be a useful way to begin using vocabulary involved in subtraction e.g.

Five little men in a flying saucer
take (away)
leave
how many are left/left over?
how many have gone?
one less, two less... ten less...
how many fewer is..
than...?
difference between
is the same as

Section 3: Development Matters in the Early Years Foundation Stage (EYFS)
This non-statutory guidance material supports practitioners in implementing the statutory requirements of the EVFS.

The importance of language development in FS mathematics
The sequential development of a childs language and vocabulary has a direct effect on their ability to explain their understanding to others. In terms of mathematical calculations a child also has to develop subject specific vocabulary alongside the development of their understanding of calculation concepts. These include:

Recite number names in sequence (22-36 months)
Uses number names and number language spontaneously (30-50months)
Uses some number names accurately in play (30-50 months)
Recites numbers in order to 10 (30-50 months)

\section*{Mental Strategies}
- Children should experience regular counting on and back from different numbers in 1 s and in multiples of 2,5 and 10.
- Children should memorise and reason with number bonds for numbers to 20, experiencing the \(=\) sign in different positions.
- They should see addition and subtraction as related operations. E.G \(7+3\) \(=10\) is related to \(10-3=7\).
- Use bundles of straws to model partitioning teen numbers into tens and ones and develop understanding of place value.
- Children should begin to understand addition as combining groups and counting on.

\section*{Children's Representations}

\section*{Written Method}
\(+=\) signs and missing numbers
Children need to understand the concept of equality before using the ' \(=\) ' sign.
Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.
\(2=1+1\)
\(2+3=4+1\)
Use weighing pans/balances to explore this.
Missing numbers need to be placed in all possible places.
\begin{tabular}{ll}
\(3+4=\square\) & \(\square=3+4\) \\
\(3+\square=7\) & \(7=\square+4\)
\end{tabular}

Children have opportunities to explore partitioning numbers in different ways. e.g. \(7=6+1,7=5+2,7=4+3=\)

\section*{Counting and Combining sets of Objects}

Combining two sets of objects (aggregation) which will progress onto adding on to a set (augmentation)

000000000000

Understanding of counting on with a number track.

Understanding of counting on with a number line (supported by models and images).
7+4

Together for Newark
(

\section*{Year 1 - Addition}

\section*{Key Vocabulary}

Addition, add, forwards, put together, more than, total, altogether, distance, between, difference between, equals = same as, most pattern, odd, even digit, counting on.

\section*{Key Questions and Generalisations}

True or false? Addition makes numbers bigger.
True or false? You can add numbers in any order and still get the same answer.
(Links between addition and subtraction)
When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.
How many altogether? How many more to make...? I add 3 more..? What is the total? How many more is...than...? How much more is...? One more, two more, ten more...
What can you see here?
Is this true or false?
What is the same? What is different?

\section*{Links from other curriculum areas:}

Combine and increase numbers, counting forwards and backwards.
Develop the concept of addition and subtraction and ... use these operations

Now do the same for rows of 6 counters, 7 counters, 8 counters, 9 counters and 10 counters.

Children should be able to recall all number bonds to and within 10. Exposing the structure of the mathematics supports this process. They should then apply this to

Together for Newark

\section*{flexibly.}

Discuss and solve problems in familiar practical contexts, including using quantities.
Compare, describe and solve practical (measure) problems e.g. longer, more than, heavier than
Problem terminology should include: put together, add, altogether, total, take away, distance between, difference between, more than and less than, is the same as.

\section*{number bonds to 20 , so if \(5+3=8,15+3=18\)}

\section*{I'm thinking of? Explain how you know.}

I'm thinking of a number. I've added 8 and the answer is 19 . What number was I thinking of? Explain how you know.
I know that 7 and 3 is 10 . How can I find \(8+3\) ? How could you work it out? Show children a price list with items costing up to 20 p.
I have 20p to spend. If I spend 20p exactly, which two items could I buy? And another two, and another two.
If I bought one of the items how much change would I have? And another one, and another one

\section*{Year 2 - Addition}
\begin{tabular}{|c|c|}
\hline Mental Strategies & Written Method \\
\hline \begin{tabular}{l}
Children should count regularly, on and back, in steps of 2,3,5 and 10. Counting forwards in tens from any number should lead to adding multiples of 10 . \\
Number lines should continue to be an important image to support mathematical thinking, for example to model how to add 9 by adding 10 and adjusting. \\
Children should practise addition to 20 to become increasingly fluent. They should use the facts they know to derive others, e.g using \(7+3=10\) to find \(17+3=20,70+30=100\) \\
They should use concrete objects such as bead strings and number lines to explore missing numbers \(45+_{\ldots}=50\).
\end{tabular} & \begin{tabular}{l}
Missing number problems e.g \(14+5=10+\square \quad 32+\square+\square=100 \quad 35=1+\square+5\) \\
It is valuable to use a range of representations (also see Y 1). Continue to use numberlines to develop understanding of: \\
Counting on in tens and ones
\[
\begin{aligned}
23+12 & =23+10+2 \\
& =33+2 \\
& =35
\end{aligned}
\] \\
Partitioning and bridging through 10. \\
The steps in addition often bridge through a multiple of 10 e.g. Children should be able to partition the 7 to relate adding the 2 and then the 5 .
\[
8+7=15
\] \\
Adding 9 or 11 by adding 10 and adjusting by 1
\end{tabular} \\
\hline
\end{tabular}

\section*{Together for Newark}
As well as number lines， 100 squares could be used to explore patterns in calculations such
as \(74+11,77+9\) encouraging children to think about＇What do you notice？＇where
partitioning or adjusting is used．
Children should learn to check their calculations，by using the inverse．
They should continue to see addition as both combining groups and counting on．
They should use Dienes to model partitioning into tens and ones and learn to partition
numbers in different ways e．g． \(23=20+3=10+13\)

\section*{Key Vocabulary}
add，addition，more，plus，make，sum，total，altogether，how many more to make．．．？how many more is．．．than．．．？how much more is．．．．？＝，equals，sign，is the same as，Tens，ones，partition， near multiple of 10 ，tens boundary，More than，one more，two more．．．ten more．．．one hundred more

\section*{Year 2 －Addition}

\section*{Key Questions and Generalisations}

Noticing what happens when you count in tens（the digits in the ones column stay the same）
－Odd＋odd＝even；odd＋even＝odd；etc
－show that addition of two numbers can be done in any order（commutative）and
subtraction of one number from another cannot
－Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems．This understanding could be supported by images such as this．
How many altogether？How many more to make．．．？How many more is．．．than．．．？How much more is．．．？

Is this true or false？
If I know that \(17+2=19\) ，what else do \(I\) know？（e．g． \(2+17=19 ; 19-17=2 ; 19-2=17\) ； 190－20＝ 170 etc ）．

What do you notice？What patterns can you see？
Links from other curriculum areas：
Solve problems：
Using concrete objects，pictorial representations（numbers，quantities \＆
e．9．．Add 9 by adding 10 and adjusting by 1
\(35+9=44\)
Partitioning in different ways and recombine
47＋25
\(47 \quad 25=60+12\)
輁部品
\(+\)

Leading to exchanging： 72
Expanded written method
\(40+7+20+5=\)
\(\begin{array}{r}40+7 \\ +20+5 \\ \hline 60+12\end{array}\)
\(40+20+7+5=\)
\(60+12=72\)

\section*{Mastery}

Fill in the missing numbers and explain what you notice．
\(23+?=30\)
\(33-?=30\)
\(43+?=50\)
\(53-3=?\)

If each peg on the coat hanger has a value of 10 ，find three ways to partition the pegs to make the number sentences complete．

\(\square=\)

\section*{Together for Newark}

\section*{measures)}
- Applying increasing knowledge of mental \& written methods
- Partition numbers in different ways
- Discuss and solve problems that emphasise the value of each digit in two digit numbers
(They should) develop the concept of addition and subtraction and ... use these operations flexibly.
(Number addition and subtraction, Non statutory guidance.)

What is the total of each addition sentence?
Will the total always be the same?
Explain your reasoning.
'An odd number + an odd number = an even number'
Explain your reasoning.
Concrete resources might help their reasoning.

\section*{Together for Newark}

\section*{Year 3 - Addition}

\section*{Mental Strategies}

Children should continue to count regularly, on and back, now including multiples of \(4,8,50\), and 100 , and steps of \(1 / 10\).
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged. This will help to develop children's understanding of working mentally.
Children should continue to partition numbers in different ways.
They should be encouraged to choose the mental strategies which are most efficient for the numbers involved, e.g.
Add the nearest multiple of 10 , then adjust such as \(63+29\) is the same as \(63+\) 30-1;
counting on by partitioning the second number only such as \(72+31=72+30+1=\) \(102+1=103\)
Manipulatives can be used to support mental imagery and conceptual understanding. Children need to be shown how these images are related eg. What's the same? What's different?

\begin{tabular}{|l|l|}
\hline 32 & 44 \\
\hline \multicolumn{2}{|c|}{\(?\)} \\
\hline
\end{tabular}

\section*{Written Method}

Missing number problems using a range of equations as in Year 1 and 2 but with appropriate, larger numbers.

\section*{Partition into tens and ones}

Partition both numbers and recombine.
Count on by partitioning the second number only e.g.
\(247+125=247+100+20+5\)
\[
=347+20+5
\]
\[
=367+5
\]
\[
=372
\]

Children need to be secure adding multiples of 100 and 10 to any three-digit number including those that are not multiples of 10 .

\section*{Towards a Written Method}

Introduce expanded column addition modelled with place value counters (Dienes could be used for those who need a less abstract representation)

Leading to children understanding the exchange between tens and ones.

Some children may begin to use a formal columnar algorithm, initially introduced alongside the expanded method. The formal method should be seen as a more streamlined version of the expanded method, not a new method.

Together for Newark
Links from other curriculum areas:

\section*{Fractions}

Addition of fractions with the same denominator within one whole.

\section*{Mastery}

What do you notice?
Is there a relationship between the calculations?
\begin{tabular}{lll}
\(500+400=\) & \(523+400=\) & \(523+28=\) \\
\(400+500=\) & \(423+500=\) & \(423+28=\) \\
\(300+600=\) & \(323+600=\) & \(323+28=\) \\
\(200+700=\) & \(223+700=\) & \(223+28=\) \\
\(100+800=\) & \(123+800=\) & \(123+48=\)
\end{tabular}

Using coins, find three ways to make \(£ 1\).

Flo and Jim are answering a problem:
Danny has read 62 pages of the class book, Jack has read 43. How many more pages has Danny read than Jack?
Flo does the calculation \(62+43\). Jim does
the calculation 62-43. Who is correct?

Explain how you know.
Pupils might demonstrate using a bar model to explain their reasoning

Together for Newark
- Pupils should estimate the answers to a calculation and use inverse operations to check answers.
- Add amounts of money using both \(£\) and \(p\) in practical contexts.
- Measure, compare and add lengths (\(\mathrm{m} / \mathrm{cm} / \mathrm{mm}\)), mass (\(\mathrm{kg} / \mathrm{g}\)) and volume/capacity (\(1 / \mathrm{ml}\))

Sophie has five coins in her pocket. How much money might she have? What is the greatest amount she can have?

What is the least amount she can have?
If all the coins are different:
What is the greatest amount she can have? What is the least amount she can have?

\section*{Year 3 - Addition}

\section*{Key Vocabulary}

Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2

\section*{Children's Representations}

\section*{Together for Newark}

\section*{Year 4 - Addition}
\begin{tabular}{|c|c|}
\hline Mental Strategies & Written Method \\
\hline \begin{tabular}{l}
Children should continue to count regularly, on and back, now including multiples of 6, 7, 9, 25 and 1000 , and steps of \(1 / 100\). \\
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
\end{tabular} & \begin{tabular}{l}
Missing number/digit problems: \\
Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. \\
Written methods (progressing to 4-digits) \\
Expanded column addition modelled with place value counters, progressing to calculations with 4-digit numbers.
\end{tabular} \\
\hline \begin{tabular}{l}
Children should continue to partition numbers in different ways. \\
They should be encouraged to choose from a range of strategies:
\end{tabular} & \\
\hline
\end{tabular}

\section*{Together for Newark}

\section*{-Counting forwards: \(77+47\), count on 40 from 77 , then add 7}
-Reordering: \(28+75=75+28\) (thinking of 28 as \(25+3\) so \(75+25+3\))
-Partitioning: counting on or back: \(5.6+3.7=5.6+3+0.7=8.6+0.7\)
-Partitioning: compensating \(138+69=138+70-1\)
-Partitioning: using 'near' doubles: \(160+170\) is double 150 , then add 10 , then add 20 , or double 160 and add 10 , or double 170 and subtract 10
-Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes after 2.15pm?
- Using known facts and place value to find related facts.

Children should be able to make the choice of reverting to partitioning if experiencing any difficulty.
Add numbers up to two places of decimals (same number of decimals places) and adding several numbers (with different numbers of digits).
72.8
+54.6
127.4

\section*{Year 4 - Addition}

\section*{Key Vocabulary}
add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? one's boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.

\section*{Key Questions and Generalisations}

Investigate when re-ordering works as a strategy for addition. Eg. \(120+133=120+\) \(130+3\).

\section*{Together for Newark}

Children's Representations

\section*{Mastery}

Write down the four relationships you can see in the bar model.

\section*{Children should continue to count regularly, on and back.}

The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
Children should continue to partition numbers in different ways.

They should be encouraged to choose from a range of strategies:
- Counting forwards and backwards in tenths and hundredths: \(1.7+0.55\)
- Reordering: \(4.7+5.6-0.7=4.7-0.7+5.6=4+5.6\)
- Partitioning: counting on or back \(540+280=540+200+80\)
- Partitioning: bridging through multiples of 10:
- Partitioning: compensating: \(5.7+3.9=5.7+4.0-0.1\)
- Partitioning: using 'near' double: \(2.5+2.6\) is double 2.5 and add 0.1 or double 2.6 and subtract 0.1
- Partitioning: bridging through 60 to calculate a time interval: It is 11.45 . How many hours and minutes is it to 15.20 ?
- Using known facts and place value to find related facts.

Children should continue to count regularly, on and back, now including steps of powers of 10.

\section*{Key Vocabulary}

Use vocabulary from previous years; inverse \& decimal places, decimal point, tenths, hundredths, thousandths, digits, integers.

\section*{Missing number/digit problems:}

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving. Children should practise with increasingly large numbers to aid fluency
e.g. \(12462+2300=14762\)

Focus on what they notice about the digits changing as they add different numbers.

\section*{Written methods (progressing to more than 4-digits)}

As year 4, progressing when understanding of the expanded method is secure, children will move on to the formal columnar method for whole numbers and decimal numbers as an efficient written algorithm.

\section*{\(\begin{array}{r}172.83 \\ +\quad 54.68 \\ \hline 227.51 \\ \hline\end{array}\)}

Place value counters can be used alongside the columnar method to develop understanding of addition with decimal

The decimal point should be aligned in the same way as the other place value columns, and must be in the same column in the answer. Pupils should be able to add more than two values, carefully aligning place value columns.

T U .th hth
19 . 01 3. 65 Empty decimal places can be 0.70 filled with zero to show the place value in each column.

Say " 6 tenths add 7 tenths" to reinforce place value.

\section*{Together for Newark}

\section*{Year 5 - Addition}

\section*{Key Questions and Generalisations}

Sometimes, always or never true? The difference between a 2 digit number (or greater) and its reverse will be a multiple of 9 . For example the difference between 23 and 32 is 9 .
What do you notice about the differences between consecutive square numbers?
How can the numbers be increased or decreased without the answer changing, what can you generalise? \(23+46=24+45\)

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

\section*{Links from other curriculum areas}

Solve problems involving up to three decimal numbers.
Solve addition and subtraction multi step problems in context, deciding which operations and methods to use and why
Use all four operations to solve problems involving measure [e.g. length, mass, volume, money] using decimal notation,
Calculate the perimeter of composite rectilinear shapes in centimetres and metres
Use angle sum facts and other properties to make deductions about missing angles
Solve comparison, sum and difference problems using information presented in a line graph

\section*{Fractions}

Add fractions with the same denominator and denominators that are multiples of the same number (to become fluent through a variety of increasingly complex problems and add fractions that exceed 1 as a mixed number)
\[
\frac{1}{2}+\frac{3}{4}=\frac{2}{4}+\frac{3}{4}=\frac{5}{4}
\]

\(1+1=5+4=9\)
\(4 \frac{1}{5} 202020\)

\section*{Children's Representation}

Use physia/pictorial representations alongside columnar methods where needed,

\section*{Mastery}

Set out and solve these calculations using a column method.
\(3254+\) ? \(=7999\)
\(2431=?-3456\)

6373 - ? \(=3581\)
\(6719=?-4562\)

The table shows the cost of train tickets from different cities.
What is the total cost for a return journey to York for one adult and two children? How much more does it cost for two adults to make a
single journey to Hull than
to Leeds?
\begin{tabular}{|c|c|r|r|r|}
\hline & & \multicolumn{1}{|c|}{ York } & \multicolumn{1}{c|}{ Hull } & Leeds \\
\hline \multirow{2}{*}{ Adult } & Single & \(£ 1350\) & \(£ 16.60\) & \(£ 11.00\) \\
\cline { 2 - 5 } & Return & \(£ 24.50\) & \(£ 30.00\) & \(£ 20.00\) \\
\hline \multirow{2}{*}{ Child } & Single & \(£ 975\) & \(£ 11.00\) & \(£ 8.00\) \\
\cline { 2 - 5 } & Return & \(£ 15.00\) & \(£ 18.50\) & \(£ 13.50\) \\
\hline
\end{tabular}

Sam and Tom have \(£ 67.80\) between them.
If Sam has \(£ 6.20\) more than Tom, how much does Tom have?

\section*{Together for Newark}

\section*{Year 6 - Addition}

\section*{Mental Strategies}

\section*{Written Method}

Consolidate previous years.
Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.

Children should experiment with order of operations, investigating the effect of positioning the brackets in different places, e.g. \(20-5 \times 3=5 ;(20-5) \times 3=45\)

\section*{Missing number/digit problems:}

Mental methods should continue to develop, supported by a range of models and images, including the number line. The bar model should continue to be used to help with problem solving.

\section*{Written methods}

As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
Problem Solving \\
Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding
\end{tabular} \\
\hline \begin{tabular}{l}
Children's Representations \\
Use physical/pictorial representations alongside columnar methods where needed. Ask what is the same and what is different?
\[
\begin{aligned}
& 12462+2300 \\
= & 12462+2000+300 \\
= & 14462+300 \\
= & 14762
\end{aligned}
\] \\
Pactitioning and recombining
\end{tabular} & \begin{tabular}{l}
Adding several numbers with different numbers of decimal places (including money and measures): Tenths, hundredths and thousandths should be correctly aligned, with the decimal point lined up vertically including in the answer row. Zeros could be added into any empty decimal places, to show there is no value to add. \\
To ensure an increased complexity pupils will need to add a several numbers and with more than four digits
\end{tabular} \\
\hline
\end{tabular}

\section*{Year 6 - Addition}

\section*{Key Vocabulary}

See previous years.

\section*{Key Questions and Generalisations}

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as BODMAS, or could be encouraged to design their own ways of remembering.

\section*{Fractions}

Add fractions with different denominators and mixed numbers, using the concept of equivalent fractions.
Start with fractions where the denominator of one

\section*{Mastery}

\section*{Calculate \(36 \cdot 2+19 \cdot 8\)}
- with a formal written column method
- with a mental method, explaining your reasoning.

Together for Newark

Sometimes, always or never true? Subtracting numbers
makes them smaller. (Think about negative numbers.)
What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

\section*{Links from other curriculum areas}
- Use their knowledge of the order of operations to carry out calculations involving the four operations (BODMAS)
- Solve problems involving all four operations
- Algebra: use symbols and letters to represent variable and unknowns e.g. \(a+b=c\)
- What do we notice about these numbers? What if c was 5?
- Solve problems involving the calculation and conversions of units of measure, using decimal
notation of up to three decimal places where appropriate
- Using the number line, pupils use, add and subtract positive and negative integers for measures
such as temperature
- Calculate and interpret the mean as an average
- Interpret and construct pie charts and line graphs and use these to solve problems
- Find missing angles, and express geometry relationships algebraically (e.g. \(d=2 r\))
fraction is a multiple of the other (e.g. \(\frac{1}{2}+1 / 8=\)
\(5 / 8\)) and progress to varied and increasingly complex problems.
Practice calculations with simple fractions and decimal equivalents to aid fluency.

Write different number sentences using the digits 2,3,5 and 8 before the equals sign, using:
- one operation
- two operations but no brackets
- two operations and brackets

Can you write a number sentence using the digits 2,3,5 and 8 before the equals sign, which has the same answer as another number sentence using the digits 2
3,5 and 8 but which is a different sentence?

Jasmine and Kamal have been asked to work out 5748 + 893 and 5748-893.
Jasmine says, ' 893 is 7 less than 900 , and 900 is 100 less than 1000, so I can work out the addition by adding on 1000 and then taking away 100 and then taking away 7.'
What answer does Jasmine get, and is she correct? Explain why.

\section*{Year 1 - Subtraction}
\begin{tabular}{|l|l|}
\hline Mental Strategies & Written Method \\
\hline \begin{tabular}{l}
Subtract one digit and two digit numbers to 20, including zero. \\
Read, write and interpret mathematical statements using symbols (\(+, \ldots,=\)) \\
signs. \\
Represent and use number bonds and related addition facts within 20
\end{tabular} & Subtract one digit and two digit \\
\hline
\end{tabular}

\section*{Together for Newark}

Solve one step problems using concrete objects and pictorial representations, and missing number problems such as \(7=\) ? 9

Memorise and reason with number bonds
Add using objects, Numicon, cubes etc and number lines and tracks
Check with everyday objects
Ensure pre calculation steps are understood, including:

Counting objects, Conservation of number.

\section*{Children's Representations}

Use a range of concrete and pictorial representations, including:

\begin{tabular}{l}
909090000 \\
\hline 00090
\end{tabular}
Which hen has mow

Hands, and children
themselyes

\section*{}

Bead strings, number tracks and lines

Peter has 5 pencils and 3 erasers. How many more pencils than erasers does he have?

\[
7-3=\square, 7 \cdot \square=4
\]
\[
\begin{equation*}
\square-3=4,17-13= \tag{0}
\end{equation*}
\]
numbers to 20, including zero. \(\quad 17-\Pi=4\)

Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.

Represent and use number bonds and related subtraction facts within 20.

Is it the same answer? Which way is easiest? Understand subtraction as finding the difference:

\section*{Year 1 - Subtraction}

\section*{Together for Newark}

\section*{Key Vocabulary}

Subtraction, subtract, take away, distance between, difference between, more than, minus, less than, equals = same as, most, least, pattern, odd, even, digit,

\section*{Key Questions and Generalisations}
- True or false? Subtraction makes numbers smaller
- When introduced to the equals sign, children should see it as signifying equality. They should become used to seeing it in different positions.
Children could see the image below and consider, "What can you see here?" e. 9

3 yellow, 1 red, 1 blue. \(3+1+1=5\)
2 circles, 2 triangles, 1 square. \(2+2+1=5\)
I see 2 shapes with curved lines and 3 with straight lines. \(5=2+3\)
\(5=3+1+1=2+2+1=2+3\)

How many more to make...? How many more is... than...? How much more is...? How many are left/left over? How many have gone? One less, two less, ten less... How many fewer is... than...? How much less is...?

What can you see here?
Is this true or false?

\section*{Mastery}

Use the first number sentence to complete the second number sentence.
\[
\begin{array}{ll}
4+3=\square & 7+\square=9 \\
7-\square=4 & 9-\square=7
\end{array}
\]
\(\square\)
\(\square\) \(=2\) \(\square\)

\(\square\)

\section*{Mastery with greater depth}

I'm thinking of a number. I've subtracted 5 and the answer is 7 . What number was I thinking of? Explain how you know.

I'm thinking of a number. I've added 8 and the answer is 19 . What number was I thinking of? Explain how you know.

I know that 7 and 3 is 10 . How can I find \(8+3\) ? How could you work it out?
Show children a price list with items costing up to 20p.
I have 20 p to spend. If I spend 20 p exactly, which two items could I buy? And another two, and another two.

If I bought one of the items how much change would I have? And another one, and another one.

\section*{Together for Newark}
\begin{tabular}{|l|l|}
\hline 13 & \(?\) \\
\hline \multicolumn{2}{|c|}{27} \\
\hline
\end{tabular}

\section*{Year 2 - Subtraction}

\section*{Key Vocabulary}

Subtraction, subtract, take away, difference, difference between, minus, tens, ones, partition, near multiple of 10 , tens boundary, less than, one less, two less... ten less... one hundred less, more, one more, two more... ten more... one hundred more

\section*{Key Questions and Generalisations \\ - Noticing what happens when you count in tens} (the digits in the ones column stay the same)
- Investigate subtraction using odd and even numbers. Odd - odd = even; odd - even = odd; etc
- show that addition of two numbers can be done in any order (commutative) but subtraction of one number from another cannot
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

\section*{Fractions}

Pupils should count in fractions up to 10, in halves.

\section*{Mastery}

What do I need to add to or subtract from each of these numbers to total 60 ? \(40,44,66,69,76,86,99,89,79\).

\section*{Mastery with Greater Depth}

\section*{Together for Newark}

\[
15+5=20
\]

How many more to make...? How many more is... than...? How much more is...? How many are left/left over?
How many fewer is... than...? How much less is...?
Is this true or false?
If I know that \(7+2=9\), what else do I know? (e.g. \(2+\)
\(7=9 ; 9-7=2 ; 9-2=7 ; 90-20=70 \mathrm{etc}\)).
What do you notice? What patterns can you see?

Insert numbers to make these number sentences correct.
\begin{tabular}{|c|}
\hline \(13-\ldots\)
\end{tabular}\(<6\)
\(13-_<6 \quad 13-\ldots<6 \quad 13-\ldots<6\)
\(13-\ldots<6 \quad 13-\ldots<6 \quad 13-\ldots<6\)
\(\qquad\) 13 - \(\qquad\) \(<6\)

13 - \(\qquad\) \(<6\)

\section*{Year 3 - Subtraction}

\section*{Together for Newark}

\section*{Year 3 - Subtraction}

\section*{Key Vocabulary}

How many? left, gone, take away, leave, less/than difference between, count back, subtract, minus, fewer Hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100 , inverse, rounding, column subtraction, exchange

\section*{Together for Newark}

\section*{Key Questions and Generalisations}

Noticing what happens to the digits when you count in tens and hundreds.
Odd - odd = even etc (see Year 2)
Inverses and related facts - develop fluency in finding related addition and subtraction facts.
Develop the knowledge that the inverse relationship can be used as a checking method.

What do you notice? What patterns can you see?
When comparing two methods alongside each other: What's the same? What's different? Look at this number in the formal method; can you see where it is in the expanded method / on the number line

\section*{Fractions}
- count up and down in tenths from any given number, including mixed numbers.
- subtract fractions with the same denominator within one whole.

\section*{Mastery}

Write the four number facts that this bar model shows.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{540} \\
\hline 300 & 240 \\
\hline
\end{tabular}

Flo and Jim are answering a problem:
Danny has read 62 pages of the class book, Jack has read 43. How many more pages has Danny read than Jack?

Flo does the calculation \(62+43\). Jim
does the calculation 62-43. Who is
correct?
Explain how you know
Pupils might demonstrate using a bar model to explain their reasoning.

\section*{Year 4 - Subtraction}

\section*{Mental Strategies}

\section*{Together for Newark}

Children should continue to count regularly, on and back, now including multiples of \(6,7,9,25\) and 1000 , and steps of \(1 / 100\).
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged where appropriate.
Children should continue to estimate answers and partition numbers in different ways.
They should be encouraged to choose from a range of strategies:
- Counting forwards and backwards: 124-47, count back 40 from 124, then 4 to 80, then 3 to 77
- Partitioning: counting on or back: 5.6-3.5=5.6-3+0.5=2.1
- Partitioning: bridging through multiples of 10: 6070-4987, 4987+13+1000 \(+70\)
- Partitioning: compensating 138-69=138-70+1
- Partitioning: bridging through 60 to calculate a time interval - What was the time 33 minutes before 2.15 pm ?

- Using known facts and place value to find related facts.

\section*{Children's Representations}

72-47

This is now
"Sixty-twelve"
\({ }^{6} y^{1} 2\)

Subtract numbers with up to 4 digits using the formal written methods of columnar subtraction where appropriate
Use inverse operations to check answers to calculations.
Solve addition and subtraction problems in contexts, deciding which operations (+ or -) and methods (Singapore bar, number line, columnar subtraction)
Remember to use place value counters to support understanding further.

Compact column subtraction

\section*{Links to other strands:}
- Identify, represent and estimate numbers using different representations. (Place value)
- Recognise the place value of each digit in a four digit number.
Solve addition and subtraction two
- Estimate, compare and calculate different measures, including money in pounds and pence.

\section*{Together for Newark}

Together for Newark

\section*{Year 4 - Subtraction}

\section*{Key Vocabulary}

Minus, take away, subtract, equal to, how many more to make..? how much more? inverse, how many more/fewer? is the same as, exchange, decrease, fewer than, less than, difference between, most, least, bridge, partition,
Key Questions and Generalisations
Investigate when re-ordering works as a strategy for
subtraction. Eg. 20-3-10 = 20-10-3, but 3-20-
10 would give a different answer.
What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

\section*{Fractions}
- count up and down in hundredths from any given number, including mixed numbers
subtract fractions with the same denominator
solve simple measure and money problems involving fractions and decimals to two decimal places

\section*{Mastery}

Write down the four relationships you can see in the bar model
\begin{tabular}{|c|c|}
\hline 2300 & 1240 \\
\hline \multicolumn{2}{|c|}{3540} \\
\hline
\end{tabular}

\section*{Mastery with Greater Depth}

Write \(\gg\) or \(<\) in each of the circles to make the number sentence correct.
\(1023+24+24 \bigcirc 1023+48\)
\(1232-232 \bigcirc 1355-252\)
\(1237-68+32 \bigcirc 1242-69+31\)

Pupils shouldreason about the numbers andrelationships, rather than calculate

\section*{Year 5 - Subtraction}

\section*{Mental Strategies \\ Consolidate and decide upon appropriate mental strategies: find differences by counting up, partitioning, applying known facts, bridging through 10 and multiples of 10 , subtracting 9,11 etc by compensating, counting on to, or back from the largest number. \\ Subtracting numbers mentally with increasingly large numbers. Eg. 12,462-2300=10,162 Use rounding and inverse operation to check calculations \\ Adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places and complements of 1. E.g. 1-0.17=0.83 \\ Adding and subtracting tenths, and one-digit whole numbers and tenths \\ Use appropriate mental strategies to solve problems involving time, money and measure.}

\section*{Written Method}

Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction).
Practise adding and subtracting decimals.
Use subtraction to solve problems involving time, money and measure using decimal notation (up to 3d.p.)

\section*{Together for Newark}

\section*{Children's Representations}
```

As in Year 4, compare physical and/or pictorial representations and expanded algorithms alongside
columnar methods. Ask: What is the same? What's different?
Compare and discuss the suitability of different methods, (mental or written), in context.
Revert to expanded methods whenever difficulties arise

```

\section*{Compact column subtraction}
```

(with 'exchanging').

```


Year 5 - Subtraction

\section*{Key Vocabulary}

How many? left, gone, take away, leave, less/than difference between, count back, subtract, minus, fewer, exchange, decrease, tenths boundary

\section*{Key Questions and Generalisations}

When considering relationships between physical, pictorial and written calculations:
What is the same?
What is different?
Compare and discuss the suitability of different methods, (mental or written), in context - which is the most efficient method?

\section*{Fractions}

Subtract fractions with the same denominator and denominators that are multiples of the same number. (Include fractions exceeding 1 as a mixed number.)
Solve problems involving number up to three decimal places.
Mentally add and subtract tenths, one-digit whole numbers and tenths.

\section*{Mastery}

Set out and solve these calculations using a column method.
```

3254+\square=7999
2431=\square-3456
6373-\square=3581
6719=
$\square$ - 4562

```

\section*{Mastery with Greater Depth}

True or False?
- \(3999-2999=4000-3000\)
- \(3999-2999=3000-2000\)
- \(2741-1263=2742-1264\)
\(-2741+1263=2742+1264\)
- \(2741-1263=2731-1253\)
- \(2741-1263=2742-1252\)

Explain your reasoning.
Using this number statement, 5222-3111=5223-3112 write three more pairs of equivalent calculations.

Pupils should not calculate the answer to these questions but should look at the structure and relationships between the numbers.

\section*{Year 6 - Subtraction}

\section*{Together for Newark}

\section*{Mental Strategies}

Perform mental calculations, including with mixed operations and large numbers.
Use estimation and inverse operation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.
Use inverse knowledge to solve calculations.
Undertake mental calculations with increasingly large numbers and more complex calculations.
Use appropriate mental strategies to solve problems involving time, money and measure of up to three decimal places where appropriate.

Example Questions
What is 2 minus 0.005 ?
What is the difference between 5.7 and 8.304?
12980 + \(\qquad\) \(=13125\)
\(23,111-47=\)
\(149+137+\) \(\qquad\) \(=650\)
What is the difference between 10:23 and 11:35?

\section*{Written Method}

Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction).
Solve problems involving the calculation and conversions of units of measure, time and money using decimal notation of up to three decimal places where appropriate.

\section*{Children's Representations}

\section*{Year 6 - Subtraction}

\section*{Key Vocabulary}

How many? left, gone, take away, leave, less/than difference between, count back, subtract, minus, fewer, exchange

\section*{Key Questions and Generalisations}

What is the same?
What's different?
How can we use our existing knowledge to help us solve the problem?
Compare and discuss the suitability of different methods, (mental or written), in context - which is the most efficient method?
Which method would you choose for this calculation and why?

\section*{Fractions}

Add and subtract fractions with different denominators and mixed numbers.
They practise calculations with simple
fractions and decimal fraction equivalents to aid fluency.

\section*{Mastery}

Two numbers have a difference of \(2 \cdot 38\). The smaller number is \(3 \cdot 12\) What is the bigger number?

Two numbers have a difference of 2-3. They are both less than 10 . What could the numbers be?

\section*{Mastery with Greater Depth}

Two numbers have a difference of \(2 \cdot 38\). What could the numbers be if:
the two numbers add up to 6 ?
one of the numbers is three times as big as the other number?

Two numbers have a difference of 2-3. To the nearest 10 , they are both 10 . What could the numbers be?

\section*{Together for Newark}

\section*{Mental Strategies}

Children should; count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens; double numbers to 10; halve even numbers up to 20; begin to see the patterns of counting in \(2 s, 5 s, 10 s\) and develop the language of multiplication.
Counting in Zs; animal legs, shoes, socks... Counting in ss; fingers, toes, gloves...

Develop the vocabulary by encouraging children to explain what they are doing.

\section*{Children's Representations}

Explaining methods and reasoning orally.
How many wheels do we need to make 3 lego cars?

Grouping and sharing

\section*{Written Methods}

Children do not need to record number sentences using the symbols. This may be modelled to them along with pictures, arrays, number lines and props such as Numicon.

\section*{Signs and symbols}

\(2 \times\)\(=4\)
\(4=\) \(\square\) \(\times 2\)
NB Teacher to model jottings.
 \(4 \times 2=8\)

Children will be introduced to arrays to model 'groups of'.

\section*{Number lines (number lines)}
\(2 \times 2\)

\section*{Pictures/marks}

There are 2 sweets in a bag. How many sweets in 5 bags?

\section*{Together for Newark}

\section*{Year 1 - Multiplication}

\section*{Key Vocabulary}
lots of, groups of ,double, steps of, jumps of, doubling, columns, rows, ones, repeated addition times, longer, bigger, higher etc

\section*{Key Questions and Generalisations}

Understand 6 counters can be arranged as \(3+3\) or 2+2+2

Understand that when counting in twos, the numbers are always even.

Why is an even number an even number?
(use numicon to show this)
What do you notice?
What's the same? What's different?

\section*{Fractions}

Start using vocabulary related to fractions e.g. half, quarter, whole. Relate fractions to sharing out and measures.

Respond to fractions in real life contexts, for example;

Half fill this jug.
Is this pot/ cylinder/ container / jug less/ more than / about half filled?

\section*{Mastery}

Count in multiples of twos, fives and tens from different multiples to develop recognition of patterns in the number system. Discuss and solve problems with manipulatives and props. Work with arrays to develop understanding.

\section*{Mastery Examples:}

Ask pupils to use concrete objects to answer questions such as:
What is double 4? What is half of 6?
Show pupils pictures or groups of objects like the examples below. Ask questions such as

\(2 \times 4\)
\[
\text { Or } 4 \times 2
\]

Repeated addition
\(2 \times 4=2+2+2+2\)

\section*{Number lines}

Using the idea of multiplication as repeated addition.

\section*{Towards written methods}

Use jottings to develop an understanding of doubling two digit numbers.
\[
{ }_{{ }_{20}^{10}}^{{ }_{20}}{ }^{16} _{6}
\]

Year 2 - Multiplication

\section*{Key Vocabulary}
lots of, groups of ,double, steps of, jumps of, doubling, multiples, times, multiply, multiplied by, repeated addition, array, row, column, twice, inverse operation, divide

\section*{Together for Newark}
```

Key Questions and Generalisations
Commutative law shown on array (video)
Links to Teachers TV from NCTEM Website - use
counters and flip the array around.
Repeated addition can be shown mentally on a number
line.
How many lots of...?
Can you work out ... with an array or number line?
Explore the inverse relationship between
multiplication and division. Use an array to explore
how numbers can be organised into groups.
What do you notice?
What is the same? What is different?
Can you convince me?
How do you know?
Pupils may be able to carry out certain procedures
and answer questions like the ones outlined, but
the teacher will need to check that pupils really
understand the idea by asking questions such as
'Why?', 'What happens if ...?', and checking that pupils
can use the procedures or skills to solve a variety of
problems.

```

\section*{Fractions}

I have half, I have 10, how many were there?

\section*{Mastery}

Children should be able to commit multiplication facts to memory and understand the concept. They should demonstrate this when solving problems.
Pupils should look for and recognise patterns within tables and connections (e.g. \(5 x\) is half of \(10 x\)).

Pupils should be able to demonstrate understanding in a range of contexts including:
measurement - counting 5 minute intervals on a clock face and using money to support counting in \(2 s, 5 s, 10 s, 20 s, 50 s\) and \(100 s\).

\section*{Mastery Example:}

Sally buys 3 cinema tickets costing £5
each. How much does she spend? Write
the multiplication number sentence and
calculate the cost.
If Sally paid with a \(£ 20\) note, how much change would she get?
Mastery with Greater Depth Example:
Together Rosie and Jim have £12. Rosie has twice as much as Jim. How much does Jim have? The bar model can be useful here.

```

Year 3 - Multiplication

```

\section*{Together for Newark}

\section*{Mental Strategies}
- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables (and 2, 5 and 10 multiplication tables from Y2)
- Use doubling to connect 2, 4 and 8 multiplication tables
\[
\begin{aligned}
& \text { The associative law: } \\
& \begin{aligned}
4 \times 12 \times 5 & =4 \times 512 \\
& =20 \times 12 \\
& =240
\end{aligned}
\end{aligned}
\]
- Develop efficient mental methods using commutativity and associativity
- Derive related multiplication and division facts
- calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods The commutative law:
- Partitioning: multiply the tens first and then multiply the units, e.g. \(57 \times 6=(50 \times 6)+(7 \times 6)=300+42=342\)
- Children can apply these skills to solve spoken word problems too,
\(4 \times 12=12 \times 4\)

I have 8 packets, each containing 12 crayons. How many crayons do I have in total?

\section*{Children's Representations}

\section*{Written Method}

Written methods (progressing to 2digit \(x\) 1digit)
Introduce the grid method with children physically making an array to represent the calculation (e.g. make 8 lots of 23 with 10 s and \(1 s\) place value counters), then translate this to grid method format.

Developing written methods using understanding of visual images
\[
\begin{aligned}
& \circ 0 \circ \circ \circ
\end{aligned}
\]

Develop onto the grid method
\begin{tabular}{c|c|c|}
\multicolumn{3}{c}{} \\
\hline 3 & 10 & 8 \\
\hline & 30 & 24 \\
\hline
\end{tabular}

Give children opportunities for children to explore this and deepen understanding using Dienes apparatus and place value counters. Leading to
Short multiplication
\(24 \times 6\) becomes
\[
\begin{array}{r}
24 \\
\times \quad 6 \\
\hline 144 \\
\hline 24
\end{array}
\]

Answer: 144

\section*{Together for Newark}

\section*{Key Vocabulary}

Partition, grid method, inverse, groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, units, value

\section*{Key Questions and} Generalisations
Connecting \(\times 2, \times 4\) and \(\times 8\) through multiplication facts

Comparing times tables with the same times tables which is ten times bigger. If \(4 \times 3=12\), then we know \(4 \times 30=120\). Use place value counters to demonstrate this.

When they know multiplication facts up to \(x 12\), do they know what \(x 13\) is? (i.e. can they use \(4 \times 12\) to work out \(4 \times 13\) and \(4 \times 14\) and beyond?)

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?

\section*{Fractions}
recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators

recognise and show, using diagrams, equivalent fractions with small denominators

\section*{Mastery}

\section*{What is the relationship between these calculations?}
\(3 \times 4 \quad 4 \times 8\)
\(4 \times 3 \quad 8 \times 4\)

Children should understand that multiplication is commutative.

\section*{Mastery with depth}

What is the relationship between these calculations?
\(2 \times 3 \quad 4 \times 3\)
\(2 \times 30 \quad 4 \times 30\)
\(20 \times 3 \quad 40 \times 3\)
\(20 \times 3 \times 10 \quad 40 \times 3 \times 10\)

Children should use their knowledge of place value to mentally calculate by multiples of 10 .

Together for Newark

\section*{Year 4 - Multiplication}

\section*{Mental Methods}

Children should continue to count regularly, on and back, now including multiples of \(6,7,9,25\) and 1000, and steps of \(1 / 100\).
Become fluent and confident to recall all tables to \(\times 12\)
Use the context of a week and a calendar to support the 7 times table (e.g. how many days in 5 weeks?)
Use of finger strategy for 9 times table.
Multiply 3 numbers together
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged.
They should be encouraged to choose from a range of strategies:
- Partitioning using \(\times 10, \times 20\) etc
- Doubling to solve \(\times 2, \times 4, \times 8\)

The commutative law:
- Recall of times tables
\(4 \times 12=12 \times 4\)

Use of commutativity of multiplication

\section*{Written Methods}

\section*{(progressing to 3digit \(\times 2\) 2digit)}

Children to embed and deepen their understanding of the grid method to multiply up \(2 \mathrm{~d} \times 2 \mathrm{~d}\). Ensure this is still linked back to their understanding of arrays and place value counters.

- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- Estimate before calculating
- Ensure written methods build on/relate to mental methods (e.g. grid method)
- Introduce alongside grid and expanded column methods

\section*{Extend to}
| Leading to \(562 \times 27\)
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{x}\) & \(\mathbf{5 0 0}\) & \(\mathbf{6 0}\) & \(\mathbf{2}\) \\
\hline \(\mathbf{2 0}\) & 10,000 & 1200 & 40 \\
\hline \(\mathbf{7}\) & 3,500 & 420 & 14 \\
\hline & 13,500 & 1620 & 54 \\
\hline
\end{tabular}

Together for Newark

\section*{Year 4 - Multiplication}

\section*{Key Questions and Generalisations} Children given the opportunity to investigate numbers multiplied by 1 and 0 .

When they know multiplication facts up to \(\times 12\), do they know what \(x 13\) is? (i.e. can they use \(4 \times 12\) to work out \(4 \times 13\) and \(4 \times 14\) and beyond?)

What do you notice? What's the same? What's different? Can you convince me? How do you know?

\section*{Fractions}

\section*{- recognise and show, using diagrams, families of common equivalent fractions}
- understand the relation between non-unit fractions and multiplication and division of quantities, with particular emphasis on tenths and hundredths.
- make connections between fractions of a length, of a shape and as a representation of one whole or set of quantities.
- use factors and multiples to recognise equivalent fractions and simplify where appropriate
\[
\frac{4}{10} \frac{6}{15} \frac{8}{20} \quad \frac{10}{25} \quad \frac{12}{30} \quad \frac{14}{35} \quad \frac{16}{40} \quad \frac{2}{5}=\frac{16}{40}
\]

\section*{Mastery}

Three children calculated \(7 \times 6\) in different ways.
Identify each strategy and complete the calculations.

Now find the answer to \(6 \times 9\) in three different ways.

\section*{Together for Newark}

\section*{Mastery with Greater Depth}

Multiply a number by itself and then make one factor one more and the other one
less. What happens to the product?
E.g.
\(4 \times 4=16 \quad 6 \times 6=36\)
\(5 \times 3=15 \quad 7 \times 5=35\)
\(\square\)
```

Year 5 - Multiplication

```

\section*{Key Vocabulary}
cube numbers, prime numbers, square numbers, common factors, prime number, prime factors, composite numbers groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short/long multiplication

\section*{Together for Newark}

\section*{Mental Strategies}

Children should continue to count regularly, on and back, now including steps of powers of 10.
Multiply by 10, 100, 1000, including decimals (Moving Digits ITP)
The number line should continue to be used as an important image to support thinking, and the use of informal jottings should be encouraged.
They should be encouraged to choose from a range of strategies to solve problems mentally:
- Partitioning using \(\times 10, \times 20\) etc
- Doubling to solve \(\times 2, \times 4, \times 8\)
- Recall of times tables
- Use of commutativity of multiplication

If children know the times table facts to \(12 \times 12\). Can they use this to recite other times tables (e.g. the 13 times tables or the 24 times table)

Year 5 - Multiplication

\section*{Written Methods}

\section*{Together for Newark}
Short multiplication for multiplying by one digit
Pupils could be asked to work out a given calculation using the grid, and then compare it to "your" column method. What are the similarities and differences? Unpick the steps and show how it reduces the steps.

Long multiplication for multiplying by 2 digits
Long multiplication using place value counters
Children to explore how the grid method supports an understanding of long multiplication (for 2digit \(\times 2\) digit)
\(10 \quad 8\)
\begin{tabular}{|c|c|}
\hline 10 \begin{tabular}{|c|}
\hline 100 \\
\hline
\end{tabular} & 80 \\
\hline & 30 \\
\hline
\end{tabular}
Multiply numbers up to 4 digits by a one or two digit number using a formal written method including long multiplication.

Compact methods for multiplication are efficient but often do not make the value of each digit explicit. When introducing multiplication of decimals, it is sensible to take children back to an expanded form such as the grid method where the value of each digit is clear, to ensure that children understand the process.

Build on dildren's understanding: demonstrate mul uplication or a decimal number al ongside its whole number equivalent
\begin{tabular}{r}
326 \\
\(\times \quad 8\) \\
\hline 2400 \\
160
\end{tabular} \begin{tabular}{r}
3.26 \\
48
\end{tabular}\(\quad\)\begin{tabular}{r}
84.00 \\
\hline 1.60 \\
\hline
\end{tabular}
\(124 \times 26\) becomes
\begin{tabular}{cccc}
\multicolumn{3}{c}{\(4 \times\)} & \\
& 1 & 2 & \\
& 1 & 2 & 4 \\
\(\times\) & & 2 & 6 \\
\hline & 7 & 4 & 4 \\
2 & 4 & 8 & 0 \\
\hline 3 & 2 & 2 & 4 \\
\hline 1 & 1 & & \\
\hline
\end{tabular}

Answer: 3224

Year 5 - Multiplication

\section*{Together for Newark}

\section*{Key Questions and} Generalisations

Relating arrays to an understanding of square numbers and making cubes to show cube numbers. Understanding that the use of scaling by multiples of 10 can be used to convert between units of measure (e.g. metres to kilometres means to times by 1000)

What do you notice?
What's the same? What's different?
Can you convince me?
How do you know?
How do you know this is a prime number?

\section*{Fractions}
- Multiply proper fractions by mixed numbers and whole numbers supported my materials and diagrams
- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.

\[
1 / 2 \times 1 / 4
\]
" \(1 / 4\) of \(\mathrm{a} 1 / 2\) ": find \(\mathrm{a} 1 / 2\), then divide it by 4 .

Encourage children to draw diagrams to represent situations or problems involving fractions Model how to do this, for example:
\(2 / 5\) of a number is 20 . What is the number?

\section*{Mastery:}

Fill in the missing numbers in this multiplication pyramid

\section*{Mastery with depth:}

Put the numbers \(1,2,3\) and 4 in the bottom row of this multiplication pyramid in any order you like.

What different numbers can you get on the top of the number pyramid? How can you make the largest number?

Explain your reasoning

\section*{Together for Newark}

Year 6 - Multiplication

\section*{Mental Strategies}

Perform mental calculations, including with mixed operations and large numbers (increasingly large numbers \& more complex calculations). Use all the multiplication tables to calculate mathematical statements in order to maintain fluency.
Use estimation to check answers to calculation \& determine, in the context of a problem, an appropriate degree of accuracy.
Identify the value of each digit in numbers given to 3 decimal places and multiply and divide number 10 , 100, 1000 giving answers to 3 decimal places.
Children should know the square numbers up
to \(12 \times 12\) \& derive the corresponding squares of multiples of 10 e.g. \(80 \times 80=6400\)

\section*{How many different \(x / \div\) facts can you make using 72? 7.2? 0.72 ?}

\section*{What is the best approximation \\ for \(4.4 \times 18.6\) ?}

Use mental strategies to solve problems e.g.
- \(x 4\) by doubling and doubling again
- \(\mathrm{x5}\) by x10 and halving
- \(x 20\) by \(\times 10\) and doubling
- \(x 9\) by multiplying by 10 and adjusting
- \(x 6\) by multiplying by 3 and doubling

\section*{Written Methods}
- multiply multi-digit numbers up to \(\mathbf{4}\) digits by a two-digit whole number using the formal written method of long multiplication (short \& long multiplication)
- multiply one-digit numbers with up to two decimal places by whole numbers

\section*{Written methods}

understanding of written methods including fluency for using long multiplication

Look at long-multiplication calculations containing errors, identify the errors and determine how they should be corrected

Together for Newark
\begin{tabular}{l}
Children's Representations \\
Number lines \\
\(18 \times 7=\) \\
\hline 0
\end{tabular}

\section*{Links to other curriculum areas}

Identify multiples \& factors, including all factor pairs of a number, \& common factors of two numbers. Know and use the vocabulary of prime numbers, prime factors and composite (non prime) numbers.
Solve problems involving multiplication and division including their knowledge of factors and multiples, squares and cubes, including understanding the meaning of the equal sign.
Solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.
Use all four operations to solve problems involving measures and decimal notation, including scaling. Convert between different units of metric measure: problems including money.

\section*{Key Vocabulary}
common factor groups of, lots of, double, jumps of doubling, groups of times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, tenths, hundredths, decimal, quotient

\section*{Together for Newark}

Together for Newark

Children should begin to understand division as both sharing and grouping. Sharing, 6 sweets are shared between 2 people. How many do they have each?

Grouping- How many 2's are in 6?

They should use objects to group and share amounts to develop understanding of division in a practical sense. E.g. using Numicon to find out how many 5's are in 30? How many pairs of gloves if you have 12 gloves?

Children should begin to explore finding simple fractions of objects, numbers and quantities. E.g. 16 children went to the park at the weekend. Half that number went swimming. How many children went swimming?

Year 1 - Division Children's Representations

How many 3s
in 15 ?

Use of arrays as a pictorial representation for division. \(15 \div 3=5\) There are 5 groups of 3 . \(15 \div 5=3\) There are 3 groups of 5 .

\section*{OQ}

Initially children use their own recording moving to

: notation in year 2

\section*{Mastery}

\section*{Together for Newark}

\section*{Use a range of concrete and pictorial representations, including:}
- Manipulatives to support children's own recording; and understanding of sharing and the link with Moving from concrete "How can we share 6 cakes between 2 people?" 00 to pictorial, counters Here, the cakes are placed in an array formation. represent the cakes to reinforce the relationship between multipli- cation and division
- Manipulatives, and real-life objects to support children's own recording; and understanding of grouping and the link with multiplication.

- Dominoes and dice to reinforce concepts of doubling and halving.

\section*{Key Questions and Generalisations}

True or false? Here's a pile of socks...can I pair them all up?
What's the same and what's different? Look at these 2 piles of socks...can you compare them?

Grouping and sharing are different types of problems. Some problems need solving by grouping and some by sharing. Encourage children to practically work out which they are doing.
- How many groups of ...?
- How many in each group?

Share... equally into...
- What can you notice?

\section*{Mastery}

Sarah is filling party bags with sweets. She has 20 sweets altogether and decides to put 5 in every bag. How many bags can she fill?

\section*{Mastery with Greater Depth}

How else could 20 sweets be put into bags so that every bag had the same number of sweets?

How many bags would be packed each time?

\section*{Fractions}

Find half a number of objects through practical sharing.

\section*{Together for Newark}

\section*{Year 1 - Division}

Four children share a pizza equally. Draw a diagram to show how much pizza each child gets.
What fraction of the pizza does each child eat?

Four children share a bag of 12 marbles equally Draw a diagram to show how many marbles each child gets.
What fraction of the bag of marbles does each child get?
Complete this halving wall.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{20} \\
\hline 10 & \\
\hline
\end{tabular}

Choose any number and create your own halving wall.

\section*{Mastery with Ereater Depth}

Sam and Tom share the fruit equally. There are 4 apples, 3 oranges, 1 pear and 1 banana.
How many of each fruit do they receive?
Complete the table below.

Four children share 2 pizzas equally. Draw a diagram to show how much pizza each child gets.
What fraction of the pizzas does each child eat?

Four children share two bags of 8 marbles equally. Draw a diagram to show how many marbles each child gets.
What fraction of one bag of marbles does each child get?

\section*{Complete this halving wall}

What is the relationship between the top row and one part of your final row? Explain your reasoning.
\begin{tabular}{l|l|l|l|}
\hline \multicolumn{4}{|c|}{20} \\
\hline \multicolumn{2}{|c|}{10} & \multicolumn{2}{|c|}{} \\
\hline & & & \\
\hline
\end{tabular}

Choose any number and create your own halving wall

\section*{Key Vocabulary}
share, share equally, one each, two each..., group, groups of, lots of, array

\section*{Together for Newark}

\section*{Year 2 - Division}

\section*{Mental Strategies}

Children should count regularly, on and back, in steps of 2,3,5 and 10.
Children who are able to count in twos, threes, fives and tens can use this knowledge to work out other facts such as \(2 \times 6,5 \times 4,10 \times 9\). Show the children how to hold out their fingers and count, touching each finger in turn. So for \(2 \times 6\) (six twos), hold up 6 fingers:

Touching the fingers in turn is a means of keeping track of how far the children have gone in creating a sequence of numbers. The physical action can later be visualised without any actual movement.

This can then be used to support finding out 'How many 3's are in 18?' and children count along fingers in 3's therefore making link between multiplication and division.

Children should continue to develop understanding of division as sharing and grouping.

\(15 \div 3=5\)

15 pencils shared between 3 pots, how many in each pot?

\section*{Children's Representations}

Use a range of concrete and pictorial representations, including:

- Number lines to support grouping

\[
\overbrace{\text { Co }}^{\infty}
\]
- Representations to support multiplicative reasoning:
\[
\begin{aligned}
& \text { Using Dienes: "If } 40 \div 10=4 \text { and } 30 \div 10=3 \text {, } \\
& \text { what do you think } 70 \div 10 \text { would be? Why?" }
\end{aligned}
\]

Is 14 an odd number How do you know?

Grouping ITP

\section*{Written Methods}

Pupils decode a problem first, represent it using manipulatives and jottings; and finally record it symbolically.

Know and understand sharing and grouping-introducing children to the \(\div\) sign. Children should continue to use grouping and sharing for division using practical apparatus, arrays and pictorial representations.
Grouping using a numberline
Group from zero in jumps of the divisor to find our 'how many groups of 3 are there in 15?'
\(15 \div 3=5\)

Continue work on arrays. Support children to understand how multiplication and division are inverse. Look at an array - what do you see? What else do you see?
\begin{tabular}{ll}
\(\div=\) signs and missing numbers \\
\hline \(6 \div 2=\square\) & \(\square=6 \div 2\) \\
\(6 \div \square=3\) & \(3=6 \div \square\) \\
\(\square \div 2=3\) & \(3=\square \div 2\) \\
\(\square \div \nabla=3\) & \(3=\square \div \nabla\)
\end{tabular}

Together for Newark

\section*{Year 2 - Division \\ Children's Representations (cont.)}

\section*{Know and understand sharing and grouping:}

6 sweets shared between 2 people, how many do they each get?
There are 6 sweets, how many people can have 2 sweets each?

Sharing\(\square \square\) \(\square\)

Children should be taught to recognise whether problems require sharing or grouping.

\section*{Fractions}

Recognise, find, name and write fractions bI, \(\frac{1}{4}, \frac{3}{4}, 2 / 4\) of a length, shape, set of objects or quantity.
Write simple fractions for example, \(\frac{1}{2}\) of \(6=3\) and recognise the equivalence of \(\frac{1}{2}\) and 2/4.

\section*{Key Questions and Generalisations}

An understanding of the more you share between, the less each person will get (e.g. would you prefer to share these grapes between 2 people or 3 people? Why?)

Secure understanding of grouping means you count the number of groups you have made. Whereas sharing means you count the number of objects in each group.

Some Key Questions
How many 10s can you subtract from 60?
I think of a number and double it. My answer is 8 . What was my number?
If \(12 \times 2=24\), what is \(24 \div 2\) ?
Questions in the context of money and measures (e.g. how many 10p coins do I need to have 60 p? How many 100 ml cups will I need to reach 600 ml ?)
- True or false? I can only halve even numbers?
- True or false? \(4 \times 3=12\) so \(3 \div 12=4\)
- What's the same and what's different?
\(12 \div 3=4\)
\(12 \div 4=3\)

\section*{Key Vocabulary}
group in pairs, \(3 s\)... 10 s equal, groups of, divide, \(\div\), divided by, divided into, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over

\section*{Together for Newark}

\section*{Mastery}

Two friends share 12 sweets equally between them. How many do they each get? Write this as a division number sentence.

Make up two more sharing stories like this one.
Chocolate biscuits come in packs (groups) of 5 . Sally wants to buy 20 biscuits in total. How many packs will she need to buy?
Write this as a division number sentence.
Make up two more grouping stories like this one.

Two friends want to buy some marbles and then share them out equally between them.
They could buy a bag of 13 marbles, a bag of 14 marbles or a bag of 19 marbles. What size bag should they buy so that they can share them equally?

What other numbers of marbles could be shared equally?
Explain your reasoning.

\section*{Year 3 - Division}

\section*{Mental Strategies}

Children should count regularly, on and back, in steps of 3,4 and 8. Children are encouraged to use what they know about known times table facts to work out other times tables.
This then helps them to make new connections (e.g. through doubling they make connections between the 2,4 and 8 times tables).

Children will make use of multiplication and division facts they know to make links with other facts.
\(3 \times 2=6,6 \div 3=2,2=6 \div 3\)
\(30 \times 2=60,60 \div 3=20,2=60 \div 30\)
They should be given opportunities to solve grouping and sharing problems practically (including where there is a remainder but the answer needs to given as a whole number) e.g. Pencils are sold in packs of 10 . How many packs will I need to buy for 24 children?

\section*{Written Method}

\section*{\(\div\) = signs and missing numbers}

Continue using a range of equations as in year 2 but with appropriate numbers.

\section*{Grouping}

How many 6's are in 30?
\(30 \div 6\) can be modelled as:

\section*{Becoming more efficient using a numberline}

Children need to be able to partition the dividend in different ways. \(48 \div 4=12\)

Sharing - 49 shared between 4. How many left over?
Grouping - How many 4s make 49. How many are left over?

\section*{Together for Newark}

Children should be given the opportunity to further develop understanding of division (sharing) to be used to find a fraction of a quantity or measure.

Remainders
\(49 \div 4=12 r 1\)

Place value counters can be used to support children apply their knowledge of grouping. For example: \(60 \div 10\) = How many groups of 10 in \(60 ? 600 \div 100\) = How many groups of 100 in 600?
Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an array.

Year 3 - Division

\section*{Together for Newark}

\section*{Key Questions and Generalisations}

Inverses and related facts - develop fluency in finding related multiplication and division facts.
Develop the knowledge that the inverse relationship can be used as a checking method

Questions in the context of money and measures that involve remainders (e.g. How many lengths of 10 cm can I cut from 81 cm of string? You have £54. How many \(£ 10\) teddies can you buy?)
What is the missing number?
\[
17=5 \times 3+.
\]
\[
\ldots=2 \times 8+1
\]

True or false? There are always 4 different number sentences in a number family?
\(32 \div 8=\)
\(33 \div 8=\)

\section*{Fractions}

Use children's intuition to support understanding of fractions as an answer to a sharing problem.
3 apples shared between 4 people \(=\frac{3}{4}\)

\section*{\(\Delta \square\)}

Recognise and show, using diagrams, equivalent fractions with small denominators
Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.

\section*{Mastery}

\section*{Mastery}

The following problems can be solved by using the calculation \(8 \div 2\). True or false?
- There are 2 bags of bread rolls that have 8 rolls in each bag. How many rolls are there altogether?
- A boat holds 2 people. How many boats are needed for 8 people?
- I have 8 pencils and give 2 pencils to each person. How many people receive pencils?
- I have 8 pencils and give 2 away. How many do [have left?

\section*{Mastery with Greater Depth}

Sam is planting onions in the vegetable plot in his garden.
He arranges the onions into rows of 4 and has two left over He then arranges them into rows of 3 and has none left over How many onions might he have had?

Explain your reasoning

\section*{Key Vocabulary}

Inverse, share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, remainder, multiple

\section*{Children's Representations}

Informal exploration with manipulatives supports the progression to
formal written methods-which is continued in Year 4.

\section*{Together for Newark}

\section*{Year 4 - Division}

\section*{Written Methods}

Short division to be modelled for understanding using place value counters as shown below. Calculations with 2 and 3 -digit dividends. E.g. fig 1

Pupils move onto dividing numbers with up to 3-digits by a single digit, however problems and calculations provided should not result in a final answer with remainder at this stage.
\[
\begin{array}{r}
218 \\
4 \longdiv { 8 7 ^ { 3 } 2 }
\end{array}
\]

When the answer for the first column is zero (\(1 \div 5\), as in example), children could initially write a zero above to acknowledge its place

037
\(5 \longdiv { 1 8 ^ { 3 } 5 }\)

\section*{Together for Newark}

\section*{Fractions and Decimals}

\section*{Pupils should be taught to:}
- recognise and show, using diagrams, families of
recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.
- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths

Year 4 - Division

\section*{Key Vocabulary}
divide, divided by, divisible by, divided into, share between, groups of factor, factor pair, remainder, dividend, quotient, divisor, inverse

\section*{Together for Newark}

\section*{Key Questions and Generalisations}

Alongside pictorial representations and the use of models and images, children should progress onto using a short division (bus stop) method.
Place value counters can be used to support children to apply their knowledge of grouping. Reference should be made to the value of each digit in the dividend.
'How many groups of 3 are there in the hundreds column?'
How many groups of 3 are there in the tens column?
'How many groups of 3 are there in the units/ones column?'
- True or false? \(42 \div 7=6\) so \(420 \div 7=16\)
- What's the same and what's different?

Which of these numbers will divide equally between 2,5,10? How do you know?
Could this number be in the \(2 x\) tables?

\section*{Mastery}

It is correct that \(273 \times 32=8736\). Use this fact to work out:
\(27.3 \times 3.2\)
\(2.73 \times 32000\)
\(873 \cdot 6 \div 0.32\)
\(87 \cdot 36 \div 27 \cdot 3\)
\(8736 \div 16\)
\(4368 \div 1 \cdot 6\)

\section*{Mastery with greater depth}

Which calculation is the odd one out?
\(753 \times\)
\(1 \cdot 8\) (75.3
\(\times 3) \times 6\)
\(753+753 \div 5 \times 4\)
\(7.53 \times 1800\)
\(753 \times 2-753 \times 0.2\)
\(750 \times 1 \cdot 8+3 \times 1 \cdot 8\)
Explain your reasoning.

\section*{Year 5 - Division}

\section*{Children's Representations}

Practical experience with manipulatives is vital for chil dren to talk through the language of division e.g. exchange, remainder; and to embed conceptual understanding.

\section*{Written Method}

The language of grouping to be used (see link from fig. 1 in Year 4) E.g. \(1435 \div 6\) Children begin to practically develop their understanding of how express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work

through this (e.g. what could I do with this remaining 1? How could I share this between 6 as well?)
Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs
\[
\frac{0663}{8 \longdiv { 5 ^ { 5 } 3 ^ { 5 } 0 ^ { 2 } 9 }}
\] to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.

The answer to \(5309 \div 8\) could be expressed as 663 and five eighths, 663 r 5 , as a decimal, or rounded as appropriate to the problem involved.

\section*{\(98 \div 7\) becomes}

Answer: 14
\(432 \div 5\) becomes

Answer: 86 remainder 2
\(496 \div 11\) becomes

Answer: 45 \(\frac{1}{11}\)

\section*{Together for Newark}

\section*{Year 5 - Division}

\section*{Key Vocabulary}
common factors, prime number, prime factors, composite numbers, short division, square number, cube number, inverse, power of, share, share equally, one each, two each, group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)

\section*{Key Questions and Generalisations}

The \(=\operatorname{sign}\) means equality. Take it in turn to change one side of this equation, using multiplication and division, e.g. Start: \(24=24\)
Player 1: \(4 \times 6=24\)
Player 2: \(4 \times 6=12 \times 2\)
Player 1: \(48 \div 2=12 \times 2\)

Sometimes, always, never true questions about multiples and divisibility. E.g.:
- If the last two digits of a number are divisible by 4 , the number will be divisible by 4 .
- If the digital root of a number is 9 , the number will be divisible by 9 .

- When you square an even number the result will be divisible by 4 (one example of 'proof' shown left)

\section*{Fractions}

Recognise mixed numbers and improper fractions and convert from one form to the other.
Write mathematical statements > 1 as a mixed number.
Pupils connect equivalent fractions > 1 that simplify to integers with division and other fractions > 1 to division with remainders.
Pupils connect multiplication by a fraction to using fractions as operators (fractions of)
Link to division.
Pupils should make connections between percentages, fractions and decimals Find \(m e 1 / 4\) of 16 . Find \(m e ~ 3 / 4\) of 16 .

\section*{Mastery}

Fill in the missing numbers in this multiplication pyramid.

\section*{Fill in the missing numbers:}
\(8 \div 2=\square \div 4=32 \div \square=64 \div \square\)

\section*{Sally's book is 92 pages long}

If she reads seven pages each day, how long will she take to finish her book?

\section*{Together for Newark}

\section*{Year 6 - Division}

\section*{Mental Strategies}
- Perform mental calculations, including mixed operations and large numbers.
- Identify common factors.
- Identify common multiples.
- Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
- Children should count regularly, building on previous work in previous years.
- Children should practice and apply the multiplication facts to \(12 \times 12\)
- Pupils should be practising how to express remainders as fractions, decimals or use rounding, depending upon the problem.
- If I divide this number by 5 . What will the remainder be? How do you know?

\section*{Written Method}
/ Short division, for dividing by a single digit: e.g. \(6497 \div 8\)
Short division with remainders: Pupils should continue to

use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.

Calculating a decimal remainder: In this example, rather than expressing the remainder as \(\boldsymbol{r} 1\), a decimal point is added after the units because there is still a remainder, and the one remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved.

\section*{Children's Representations}
- Divide numbers up to 4 digits by a two digit number and interpret remainders as whole number remainders, fractions or by rounding, as appropriate for the context
Divide numbers up to 4 digits by a two digit whole number using the formal written method of long division and interpret remainders as whole number remainders, fractions and as a decimal or by rounding, as appropriate for the context.
- Solve problems involving addition, subtraction, multiplication and division.

\section*{Year 6 - Division}

\section*{Key Vocabulary}

\section*{Building on previously taught vocabulary}

\section*{Key Questions and Generalisations}

Order of operations: brackets first, then multiplication and division (left to right) before addition and subtraction (left to right). Children could learn an acrostic such as BODMAS, or could be encouraged to design their own ways of remembering.

Sometimes, always, never true questions about multiples and divisibility. E.g.: If a number is divisible by 3 and 4 , it will also be divisible by 12 . (also see year 4 and 5 , and the hyperlink from the Y 5 column)

Using what you know about rules of divisibility, do you think 7919 is a prime number? Explain your answer.

\section*{Fractions}
- Divide proper fractions by whole numbers (e.g. \(1 / 3 \div 2=1 / 6\))
- associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) and for a simple fraction (e.g. \(3 / 8\))
- identify the value of each digit in numbers given to 3 decimal places and multiply and divide numbers by 10,100 and 1000, giving answers up to 3 decimal places.
- use written division methods in cases where the answer has up to two decimal places recall and use equivalences between

\section*{Mastery}

Mastery with Depth

What's the same? What's different?
Can you convince me?
How do you know?
simple fractions, decimals and percentages, including in different contexts

All the pupils in a school were asked to choose between an ant gallery and a science museum for a school trip
The result was a ratio of 127 in fapory of the science museum
Firc pupils were offrchool and didnt note
Enuy pupil wenton the trip to the science museum the following week
After the trip there isa news headine on the school website that says 4100 pupils in the school went to the science musemm"

Do you think that this new headine is conect Explain your reasoning```

